
The level splitting distribution in chaos-assisted tunnelling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 2529

(http://iopscience.iop.org/0305-4470/29/10/030)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 2529–2551. Printed in the UK

The level splitting distribution in chaos-assisted tunnelling

François Leyvraz†§ and Denis Ullmo†‡
† Division de Physique Th́eorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
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Abstract. A compound tunnelling mechanism from one integrable region to another mediated
by a delocalized state in an intermediate chaotic region of phase space was recently introduced
to explain peculiar features of tunnelling in certain two-dimensional systems. This mechanism is
known as chaos-assisted tunnelling. We study its consequences for the distribution of the level
splittings and obtain a general analytical form for this distribution under the assumption that
chaos assisted tunnelling is the only operative mechanism. We have checked that the analytical
form we obtain agrees with splitting distributions calculated numerically for a model system
in which chaos-assisted tunnelling is known to be the dominant mechanism. The distribution
depends on two parameters. The first gives the scale of the splittings and is related to the
magnitude of the classically forbidden processes, the second gives a measure of the efficiency
of possible barriers to classical transport which may exist in the chaotic region. If these are
weak, this latter parameter is irrelevant; otherwise it sets an energy scale at which the splitting
distribution crosses over from one type of behaviour to another. The detailed form of the
crossover is also obtained and found to be in good agreement with numerical results for models
for chaos-assisted tunnelling.

1. Introduction

Under the denomination of ‘quantum chaos’, a large body of theoretical and experimental
work has been devoted to the study of the specific features of a quantum system which can
be traced back to the degree of non-integrability of the underlying classical dynamics [1–3].
An area receiving increasing attention is the subject of tunnelling. In fact, although often
considered as a purely quantum phenomenon since it corresponds to classically forbidden
processes, it appears amply clear now that tunnelling processes are strongly affected by the
nature of the underlying classical dynamics [4–10].

Chaos can be present in systems withd degrees of freedom whered is greater than one
(including non-autonomous one degree-of-freedom systems). A consequence of the rich set
of dynamical possibilities in multidimensional systems is that quasi-degeneracies may exist
analogous to those found in the standard symmetric double well problem even though no
potential barrier is present. All that is truly necessary is a discrete symmetry. Indeed, unless
the dynamics is entirely ergodic, some classical trajectories are trapped ond-dimensional
invariant manifolds (invariant tori) inside the 2d-dimensional phase space. If there is a
discrete symmetry in a given system, say parity, then any torus which is not itself invariant
under this symmetry operation will have at least one exact, distinct replica elsewhere in
phase space. Semiclassical EBK quantization can be applied to these symmetrical tori with
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the result that to this approximation these energy levels have degeneracies. It is important to
note that this effect is distinct from ordinary symmetry induced eigenvalue degeneracy. The
quasi-degeneracies are not exact because, generally, tunnelling effects break the degeneracy.
This has been dubbed ‘dynamical tunnelling’ by Davis and Heller [11].

Rephrasing this in terms of wavefunctions dynamics makes it clearer why the term
‘tunnelling’ is appropriate even if there is no barrier. It is possible to construct what Arnold
has termedquasi-modes[12] if there exist invariant tori fulfilling the EBK quantization
conditions [13]. These are wave-functions semiclassically constructed on a single torus,
andthey satisfy the Schr¨odinger equation to any order in̄h. Here, similarly to what happens
when a potential barrier actually exists (e.g., a one-d conservative system), the actual
eigenstates are not approximated by a single quasi-mode, but rather by a linear combination
of quasi-modes constructed on symmetry related tori. Therefore, if one allows a quasi-mode
constructed on one of the tori to evolve for a very long time it will eventually evolve into
its symmetric partner, whereas classical trajectories remain indefinitely trapped on a single
torus.

Our interest in higher-dimensional systems lies, however, mainly in the possibility of
considering dynamics of a different nature. Even for integrable systems, no general theory
of tunnelling in multidimensional systems is presently available. However, some theoretical
and numerical studies [14, 15] clearly demonstrate that the tunnelling mechanism in this case
is rather similar to what is observed for one-d systems. In particular the splitting between
two quasi-degenerate doublets has a smooth exponential dependence in ¯h.

On the contrary, if chaotic and regular motion co-exist in the dynamics, as will
generically be the case for low-dimensional Hamiltonian systems, the tunnelling between
two symmetry related invariant tori separated by a significant chaotic region can lead to new
behaviour which is quite different from the integrable dynamics case. From a now growing
body of numerical work, either on one-dimensional time-dependent systems [4–6] or on
two-dimensional conservative systems [7, 8, 10], it has become clear that the presence of
chaos may be associated with certain qualitative features, namely: (i) great enhancement of
the average splitting; (ii) extreme sensitivity to the variation of an external parameter; and
(iii) strong dependence of the tunnelling properties on what is going on in the chaotic region
separating the two tunnelling tori. A particularly striking piece of evidence of (iii) is given
in [8] where it is observed that reducing drastically the classical transport in the chaotic
sea from the neighbourhood of one torus to the one of its symmetric partners noticeably
reduces the tunnelling rates.

In [10], it has been argued that a natural explanation of this unusual tunnelling behaviour
is obtained through the assumption that in such systems tunnelling can take place in two
fundamentally different ways, ‘directly’ or ‘chaos-assisted’. In direct tunnelling, splittings
are caused by the overlap of the semiclassical functions constructed on each symmetry
related torus via the EBK scheme (the ‘quasi-modes’). As discussed above, these quasi-
modes are not eigenstates, but satisfy the Schrödinger equation to arbitrary order in ¯h.
Nevertheless, they can be connected to other states through ‘tunnelling’ matrix elements
which are exponentially small in ¯h. (See section II.A of [10] for an explicit example.)
In contrast, in the ‘chaos-assisted’ regime, the picture is that tunnelling from one region
to its symmetrical counterpart is mainly mediated by intermediate states associated with
the chaotic region. This means that the tunnelling is dominated by the matrix elements
between the quasi-modes and states semiclassically localized in the chaotic region, rather
than by the matrix element directly connecting the two quasi-modes. This process involves
coupling the regular states to the set of delocalized intermediate states in the chaotic sea and
two tunnelling processes. The reason why it may nevertheless dominate is that the chaotic
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region may lie much ‘closer’ in phase space than the symmetrical regular region. The quasi-
mode wavefunction overlap with a delocalized intermediate state can be much larger. Once
in the chaotic region, there is nothing to prevent a particle from reaching a symmetrical
regular region. In this process, not only do the two semiclassical states play a role, but the
various delocalized chaotic eigenstates which might couple to them also become relevant.
For this reason, the tunnelling amplitudes have a remarkable dependence on ¯h. On the one
hand, they decay exponentially fast with ¯h, reflecting the smooth variation of the tunnelling
amplitude from the integrable region to the chaotic sea. On the other hand, superposed
on this smooth variation there is an extremely irregular fluctuation of the splittings due to
the violent variation in the strength of the coupling to the close-lying chaotic states. This
depends very sensitively on the smallness of the energy denominator, i.e. on whether or
not a chaotic level lies close to the tunnelling doublet. In fact, these fluctuations can be so
strong as to make any realistic assessment of the ¯h dependence of the tunnelling amplitude
impossible.

The complete picture of multidimensional tunnelling is much more difficult to treat. It
was observed on the kicked Harper model by Roncagliaet al [16] that direct tunnelling
can be dominant even in the presence of a significant chaotic region. Further, it isa priori
possible to encounter more complicated dynamics. For instance, both direct and indirect
tunnelling may be of the same importance or the dominant tunnelling mechanism may
involve a larger number of classically forbidden processes. However, since cases have been
shown to exist in which chaos-assisted tunnelling in the form described above dominates,
we confine ourselves in the following to the simpler scenario described above.

That the chaos-assisted mechanism is actually the one taking place for tunnelling in the
presence of chaos cannot at the present time be derived from the basic quantum mechanical
law of evolution. The numerical evidence, as well as a far more careful and detailed
discussion of the process, are given in [10]. It is worth stressing that one of the most
important implications of the chaos-assisted mechanism described above is that it allows
for a modelling of the splitting distribution in terms of ensembles of random matrices,
as discussed in more detail in [10]. Therefore not only a qualitative interpretation of the
numerically observed tunnelling behaviour is obtained, but also the statistical properties of
the fluctuation effects can bequantitativelypredicted theoretically. Comparison with groups
of quasi-degeneracy splittings in quantum spectra is surprisingly accurate.

The purpose of this paper is the study of the resulting matrix ensembles. Therefore let us
be more specific about the term ‘splitting distribution’ and how the theoretical predictions
have been obtained in [10]. As mentioned above, a characteristic feature of tunnelling
in the presence of chaos is the extreme sensitivity of quasi-degeneracy splittings to the
variation of an external parameter. Within the ‘chaos-assisted’ interpretation, this is quite
natural since the splitting of a given doublet may vary by orders of magnitude depending on
whether a chaotic state is close to the tunnelling doublet or not. This implies that very small
changes of external parameters, which leave the classical dynamics almost unaltered, may
drastically change the splitting by shifting chaotic levels a distance of a few mean spacings.
In any experimental setting the statistical behaviour of the splittings is likely to be of great
relevance, even if one focuses on one single well defined doublet. In this case, the physically
relevant quantity will be the distribution of splittings for an ensemble obtained by varying
an external parameter over a range which is negligible on the classical scale, but still large
on the quantum scale (i.e. many chaotic levels pass by the neighbourhood of the quasi-
degenerate level). By analogy with the random matrix ensembles describing the spectral
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fluctuations of classically chaotic systems† (see e.g. [17, 18]), or to their generalization
introduced to describe partly chaotic systems (see section 5 of [7]), one can build random
matrix ensembles modelling the tunnelling distributions corresponding to a given phase
space structure.

We shall not repeat here in detail the prescription given in [10] for constructing the
random matrix ensemble relevant to a given classical configuration. A few examples
of such ensembles are given below. Some points, though, should be stressed. First,
we are not considering fully ergodic systems otherwise there would be no invariant tori.
Hence the chaotic part of phase space cannota priori be considered as structureless. A
whole set of partial barriers should quite generally be present, preventing the motion in
the chaotic region from being completely random. In order to quantify the efficiency
of these partial barriers, additional time scales must be introduced apart from the mean
Lyapunov exponent. As a consequence, the random matrix ensembles associated to the
chaotic part of the phase space cannot be taken as structureless either, as demonstrated in
[7]. One has to introduce ‘transition ensembles’ entirely specified by a set of ‘transport
parameters’31, 32, . . .. These transport parameters are fixed by the classical dynamics and
are therefore not adjustable model parameters. In the chaos-assisted regime, the parameters
which determine the tunnelling distribution are of two kinds:

(i) the variancev2
t of the tunnelling matrix elements; it describes the classically forbidden

part of the tunnelling process and at the present time there exists no general theoretical way
to evaluate it (see, however, [19]);

(ii) the set of ‘transport parameters’31, 32, . . ., which are fixed by the classical
dynamics inside the chaotic region.

A second point we would like to stress is that it is not necessary to solve analytically the
so constructed random matrix ensembles to obtain a ‘theoretical prediction’ for the splitting
distributions. The distributions are entirely specified by the random matrix ensemble and
can be obtained concretely by performing a rather straightforward Monte Carlo calculation:
i.e. taking at random a large number of matrices with the distribution specified by the
ensemble, diagonalizing them numerically to obtain the splitting and constructing in this
way a histogram of the splitting distribution. This was the procedure used in [10] to
compare splitting distributions of doublets of a system of coupled quartic oscillators with
those predicted by the proper random matrix ensemble.

Monte Carlo simulations, however, shed little light on the general features of the
distribution. This is quite important in this context because, although all parameters but the
tunnelling amplitudevt can in principle be computed by studying the classical motion in
the chaotic region, their practical evaluation requires a great deal of effort in the simplest
situations and could turn out to be impossible for sufficiently complicated classical structures.
Moreover, in experimental realizations, the Hamiltonian governing the dynamics may not
be known in enough detail to allow fixing of the parameters of the ensemble with sufficient
confidence.

It is therefore worthwhile to gain some further understanding of the splitting distribution
determined by the ensembles of random matrices constructed in [10] and to obtain explicit
expressions for these distributions. As we shall see, they can in fact be expressed in rather
simple form. The resulting distributions have some very general features, which can be
used asthe fingerprint of chaos assisted tunnellingeven when the precise structure of the
chaotic motion is unknown. Because of the relative complexity of the derivation, we have

† These were originally introduced in nuclear physics without any intention of discussing the nature of the
underlying classical dynamics.



The level splitting distribution in chaos-assisted tunnelling 2533

chosen to organize this paper as follows. In section 2, we give the final result without
any justifications and show how well our analytic findings compare with actual splitting
distributions obtained in [10] for a system of coupled quartic oscillators. The remainder
of the paper will be devoted to the derivation of this result. Section 3 will deal with the
simpler case where the chaotic phase space can be taken as structureless. In section 4
we shall derive the splitting distributions in the case where effective partial barriers are
present and discuss in more details the hypothesis and approximation used in the derivation.
Section 5 will be devoted to some concluding remarks.

2. The splitting distribution

We are interested in a system possessing a discrete symmetryP and for which tunnelling
takes place between two quasimodes91

R and92
R constructed on symmetrical invariant tori

T1 andT2 = P(T1). The eigenstates belong to a given symmetry class+ or − depending
on whether they are symmetric or antisymmetric under the action ofP . We denote by
9+

R and 9−
R the symmetric and antisymmetric combinations of the quasi-modes91

R and
92

R. If one neglects the direct coupling between the quasimodes,9+
R and 9−

R have the
same mean energyER. The ‘chaos-assisted’ mechanism proposed in [7] assumes that the
tunnelling fromT1 to T2 originates from the (exponentially small) coupling between9+

R

(respectively9−
R ) and chaotic states of same symmetry|n, +〉 (n = 1, 2, . . .) (respectively

|n, −〉) semiclassically localized in the chaotic region surrounding the islands of stability
containingT1 and T2. Therefore, in a basis where the chaotic part of the Hamiltonian is
diagonal, the+ and− sectors appear respectively as

H+ =


Er v+

1 v+
2 · · ·

v+
1 E+

1 0 0
v+

2 0 E+
2 0

· 0 0 ·
· ·
· ·

 H− =


Er v−

1 v−
2 · · ·

v−
1 E−

1 0 0
v−

2 0 E−
2 0

· 0 0 ·
· ·
· ·

 . (2.1)

After diagonalization ofH+ andH−, the regular levels will be shifted from an amountδ+

andδ−, respectively, giving the splitting

δ = |δ+ − δ−|. (2.2)

Equation (2.1) merely summarizes the semiclassical picture one has of the chaos-assisted
tunnelling, but no random matrix modelling has been introduced yet. This modelling follows
by assuming that the statistical properties of the tunnelling are correctly reproduced ifH+

andH− are replaced by an ensemble of matrices with some specified density.
As discussed in detail in [10], the natural choice for the tunnelling matrix elements

v±
n describing the classically forbidden process is to take them as independent Gaussian

variables with the same variancev2
t and, in the absence of any partial barrier, to use for

the chaotic levelsE+
1 , E+

2 , . . . , E−
1 , E−

2 , . . . the classical ensembles of Wigner and Dyson
which are known to model properly the spectral statistics of completely chaotic systems
[20]. If time reversal invariance symmetry holds, as we shall assume in the following, this
means that one should takeE+

1 , E+
2 , . . . and E−

1 , E−
2 , . . . as two independent sequences,

with a distribution given by the Gaussian orthogonal ensemble (GOE). Symbolically this
ensemble is denoted by

H+ =
(

ER {v}
{v} (GOE)+

)
H− =

(
ER {v}
{v} (GOE)−

)
(2.3)
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where the subscripts+ and − emphasize the independent nature of the distribution. In
that case, we shall see in section 3 that the splitting distributionp(δ) is merely a truncated
Cauchy law

p(δ) =


4vt

δ2 + 4πv2
t

δ < vt

0 δ > vt.
(2.4)

As demonstrated in [7], such a simple statistical modelling of the chaotic states does not
apply any more when structures, such as partial barriers, prevent classical trajectories to flow
freely from one part of the chaotic phase space to another. In such classical configurations
(which are presumably generic in systems where chaos and regularity coexist), transition
ensembles have to be introduced to obtain a correct statistical description of chaotic states.
Compared to the case where no barriers are present, the distribution of chaotic states will be
modified in two ways. First, each of the parity sequences, taken separately, will usually not
be distributed as a GOE anymore. However, as stressed in [10], and as will be made explicit
in section 3, this has a negligible influence on the splitting distribution. More important
is that such barriers may induce strong correlations between the two parity sequences of
chaotic states. Consider a simple example for which a strong partial barrier separates the
chaotic sea into two partsR1 andR2 which are symmetric images of each other underP .
In this case, the relevant matrix ensemble can be symbolically written as [10]

H± =
(

ER {v}
{v} (GOE)S ± (GOE)A(3)

)
(2.5)

where the variance of the matrix elements of (GOE)S is chosen such that it has (in the
neighbourhood ofER) the same mean spacingD as the chaotic states, and the varianceσ 2

of the matrix elements of (GOE)A(3) is fixed by the transport parameter3 through

σ 2

D2
≡ 3. (2.6)

The transport parameter is in turn semiclassically related to the classical flux8 crossing
the partial barriers by [10]

3 = 1

4π2

g8

(2πh̄)d−1f1f2
(2.7)

whereg = 1/2 is the proportion of states in the corresponding symmetry class,f1 = f2 =
1/2 the relative phase space volume of region 1 and 2 andd the number of freedoms.

For very ineffective barriers,3 is much larger than 1.(GOE)S + (GOE)A(3) and
(GOE)S − (GOE)A(3) are two essentially independent ensembles and one recovers the
truncated Cauchy law equation (2.4) for the splitting distribution. In the opposite extreme,
a perfect barrier gives3 = 0 (except for classically forbidden processes), and the+ and−
spectra are strictly identical. In particular, the displacementsδ+ andδ− being the same give
a null splitting. For small, but finite3, a typical levelE−

n will be usually found close to its
symmetric analogueE+

n , though slightly shifted. In this case, although the displacements
δ+ andδ− are still Cauchy distributed, they are strongly correlated. This not only changes
the scale ofδ, but also its distribution.

It is useful to consider a qualitative description of the meaning of3. It can be thought
of as the ratiotH/tc of two time scales, one of which is purely classical, whereas the other
is quantum mechanical:tc is the time necessary to cross the barrier, that is, the typical time
that a classical trajectory needs in order to go from one part of the chaotic sea to the other.
The second time scaletH is the Heisenberg time ¯h/D, whereD is the average level spacing
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in the chaotic sea. As ¯h → 0, of course, one expects3 to go to infinity, as the Heisenberg
time becomes classically infinite. Nevertheless, there may well be a very significant regime
where the quantum dynamics is well described semiclassically and in which3 is very small.
In such cases, there exists a classical time scale comparable or larger than the Heisenberg
time. This time scale is related to the time necessary to explore all of the available phase
space. In this respect the situation is quite reminiscent of what happens in localization. The
difference, of course, is that we only have a small number of weakly connected phase space
regions and the long classical time has nothing to do with diffusion.

Typically, the ensemble describing the classical structure of a system will be more
complicated that the simple one given in equation (2.5). It is probable that transport from
one regular island to its symmetric counterpart is affected through the joint effect of a whole
set of moderately effective barriers rather than by the strong action of a single one. Thus
one would expect to have much more structured ensembles, with a transport parameter3n

associated with each barrier. We shall see in section 4 that, when this is the case, the
problem can still be handled much as above because all the information encoded in the
transition ensemble (that is, essentially, the3n’s) can be summarized in a single parameter
α, which is a weighted average of the variance of the(E+

n − E−
n ).

The splitting distributionp(δ) therefore depends on three parameters:(vt)
2, the variance

of the tunnelling matrix elements,α2 which measures the degree of correlation between the
odd and even levels andD, the mean spacing of the chaotic levels to which the9±

R are
connected. If one consider effective barriers,α is smaller thanD. Moreover,vt being
related to classically forbidden processes is usually extremely small and in particular much
smaller thanα. We shall therefore assume belowvt � α < D. Then, the main result of
this paper is that, for this parameter range, the splitting distribution is given by

• for vt < δ

p(δ) = 0 (2.8)

• for v2
t /α < δ < vt

p(δ) = 4vt

δ2 + 4πv2
t

(Cauchy) (2.9)

• for δ < v2
t /α

p(δ) = 2µ−1G

(
δ

µ

)
(2.10)

where the functionG is the inverse Fourier transform of exp(−√|q|), namely

G(x) ≡ 1

2π

∫
exp(iqx) exp(−√

q) dq (2.11)

and

µ =
√

3202(3/4)

π

αv2
t

D2
. (2.12)

As expected (see section IV.B. of [10]), only the smaller splittings are affected by the
transport limitation, the distribution for larger splittings being unaffected. The asymptotic
behaviour of theµ−1G(δ/µ) is given by

p(0) = 2µ−1G(0) = 1√
202(3/4)

D2

αv2
t

in δ = 0 (2.13)

µ−1G(δ/µ) ' 0(3/4)

21/4π

√
αvt

D

1

δ3/2
for δ � αv2

t /D
2. (2.14)
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Therefore, for small enoughα/D and vt/D, the distributionp(δ) will, in a log–log
plot, essentially consist of three straight lines: (i) a horizontal one (atp(0), as given
by equation (2.13)), for 0< δ < αv2

t /D
2; (ii) a line of slope (−3/2) in the range

αv2
t /D

2 < δ < v2
t /α; (iii) a slope (−2) characteristic of the Cauchy distribution for the

rangev2
t /α < δ < vt, after which the distribution abruptly falls to zero.

We digress briefly to give an intuitive picture of what is happening. First assume that
there are no barriers. Then chaos-assisted tunnelling is essentially a compound process
involving the two symmetrical states and those chaotic states which lie nearby. Fast
tunnelling (large splittings) occur only if at least one of these states actually lies very
near to the quasi-degenerate tunnelling state. This then yields a tunnelling process mediated
by one single delocalized chaotic state. This process has a characteristicδ−2 distribution,
as we shall show later. Here it is essential to realize that the chaotic state involved, since it
has a well defined symmetry, will always directly couple from one torus to its symmetrical
partner. On the other hand, if an efficient barrier exists, the chaotic states also come in
quasi-degenerate doublets of opposite parity and of characteristic splittingα. Therefore,
moderately fast processes will be mediated by such a doublet rather than by a single state.
Again, we shall show that this leads to a universal behaviour ofδ−3/2 as long as the
doublet is identifiable as such. That is as long as the two energy denominators contribute
by a roughly equal amount. However, for very fast processes, the tunnelling will again be
mediated by a single state, namely the one nearest to the tunnelling doublet, and theδ−2

behaviour is again obtained. The details are given by the above formulae which also show
a considerable amount of information for intermediate cases which cannot be derived in
such a simple fashion.

Before going to the calculation of the above distribution, let us see how it compares to
actual distributions of splittings obtained numerically for a system of two coupled quartic
oscillators governed by an Hamiltonian of the form

H(p, q) = p2
1 + p2

2

2m
+ a(q4

1/b + bq4
2 + 2λq2

1q2
2). (2.15)

Except for their presentation, we use here a log–log plot instead of a linear against log
binning, the data used in figure 1 are exactly the same as those used in figure 13 of [10];
see this reference for more information on the system investigated. Here, we shall only say
that each set of data has been obtained by numerically calculating the splittings between
regular states constructed on a given identified pair of symmetrical invariant tori, for various
values of the couplingλ†. The range of variation ofλ is small on the classical scale (the
classical dynamics remains essentially the same), but sufficiently large on the quantum scale
that a good statistical significance is reached.

In figure 1 we display the comparison between the quartic oscillators data and the
predicted form of the distribution equations (2.8)–(2.10) for two splitting distributions
associated with two different pairs of symmetric invariant tori. The agreement is extremely
good, especially if one considers that the distribution extends over more than six decades.
Here a remark is in order. The parametersα andvt used for the analytical curves in figure 1
are actually tunable parameters. This was already the case forvt for the ensemble introduced
in [10], since there is not yet any semiclassical theory allowing for the calculation of the
matrix elements associated with such classically forbidden processes. Here, however, one
has another tunable parameterα. In principle, this parameter is fixed once the the random
matrix ensemble describing the statistical properties of the chaotic level is known, which is

† In practice, to increase the statistical significance of the distribution, data coming from close-lying tori have
been combined.
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Figure 1. Comparison between the quartic oscillator’s tunnelling splitting distribution (square
symbols) and the predicted form equations (2.8)–(2.10) for two different groups of tunnelling
tori. Except for their presentation, the quartic oscillator’s data are the same as those in figure 13
of [10]. The transition from theG-like behaviour (full curve) to Cauchy-like behaviour (chained
dot curve) is clearly seen, in spite of this latter being valid on a much shorter range: (a) group
T0 (using the notation of [10]), withvt = 1.1× 10−2; (b) groupT1 , with vt = 2.5× 10−2. The
transport parameter has the same valueα = 0.04 in both cases, consistent with the fact that the
partial barriers structure is the same in both cases. It has been taken into account that only a
fraction Deff = 0.36D of the states are actually participating to the tunnelling process.

the case for this particular system. In practice, however, there is usually no way to relateα

analytically to, say, the set of transport parameters3n’s. Thereforeα eventually plays the
role of a tunable parameter. It should be borne in mind, however, thatα andvt only fix the
scale of the distribution and, in particular, the place of the crossover from Cauchy to theG-
like behaviour, but not its shape. Therefore, despite the presence of two parameters, the fact
that the splitting distribution in figure 1 actually follows the prediction of equations (2.8)–
(2.10) is a very stringent test of the relevance of the whole ‘chaos-assisted’ picture. After
this attempt to put the results in perspective, we turn to their derivation.

3. The case without barriers

We now want to compute the distribution of the splittings in the case in which no barriers
are present. Under these circumstances, it is sufficient to compute the distribution ofδ+,
and henceδ−, since these splittings are statistically independent.

To begin with, in the matricesH+ and H− of equation (2.1), the matrix elementsv±
i
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are associated with classically forbidden processes and are thus extremely small. Therefore,
one can compute the displacementδ± using a first-order perturbation result. One must
take special care with the rare, but important case, where a chaotic level approachesER

closely. This can be done using the exact two-by-two diagonalization result for each chaotic
eigenstate and adding up the contributions. This gives

δ± = 1

2

N∑
i=1

(ER − E±
i )

1 −
√

1 +
(

2v±
i

ER − E±
i

)2
 (3.1)

(to be understood in theN → ∞ limit). In the absence of anE±
i near ER, the above

equation is equivalent to the usual perturbative result,

δ± ≈
N∑

i=1

|vi |2
ER − E±

i

(3.2)

but the full expression equation (3.1) has to be used to regularize it whenever any of the
(E± − ER) is of the order ofvt.

Although we shall give below a more detailed discussion ahead, the basic way we are
going to use equation (3.1) is that the regularized form ofδ±(E±

i , v±
i ) prevents any splitting

from being significantly larger thanvt and that, forδ± smaller thanvt, equation (3.2) can
be used safely. To clarify the discussion, we shall for the moment replace the(v±

i )2 by
their average valuev2

t , and justify below why this does not change the result. Without loss
of generality we also setER equal to zero (ER is not correlated to the chaotic spectrum, so
it can be used as the origin of the energies). We shall in addition consider the normalized
regular level shiftx and energy levele1, e2, . . . (we drop the superscript+ or − for the
normalized quantities)

x = δ±D

v2
t

ei = E±
i

D
. (3.3)

With these manipulations,p(x) is in principle obtained forx < D/vt (i.e. δ± < vt) as
the integral

p(x) =
∫

δ

(
x −

N∑
i=1

1

ei

)
P(e1, e2, . . . , eN) de1 de2 . . . deN (3.4)

whereP(e1, . . . , eN) is the joint probability of a GOE spectra with mean density equal to
one in the centre of the semicircle. It happens, however, that the correlations of the chaotic
states have no influence onp(x), because the physics here is determined by the singular
nature of the energy denominator which is not expected to be very sensitive to many-particle
correlations.

To demonstrate this point, let us consider, for instance, the integral equation (3.4) except
that we take for the chaotic states a Poisson distribution, i.e. that we neglect any correlations
between them. In this case, introducingξi = Nei , one can write

x = 1

N

N∑
i=1

ξ−1
i (3.5)

that is the random variablex is the average of theξ−1
i , where theξi ’s are independent

variables with density of probability one at the origin. If the distribution of 1/ξi had a
second moment (i.e.〈ξ−2〉 < ∞), the usual central limit theorem would yield a Gaussian
distribution for p(x). Here the situation is quite different as this variance diverges. The
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distributionp0(y) of theyi = ξ−1
i behaves asy−2 for y � 1 whatever the initial distribution

of the ξi as long as that distribution is equal to one forξ equal to zero†. From this follows
through standard probabilistic arguments [21] thatx has a non-singular limiting distribution,
namely the Cauchy law

p(x) = 1

π2 + x2
. (3.6)

Informally, this result can be obtained as follows. If the chaotic states are distributed
independently, equation (3.4) reads

p(x) =
∫ ∞

−∞

N∏
i=1

dyi p0(yi)δ

(
x − 1

N

N∑
i=1

yi

)
. (3.7)

If we now take the Fourier transform of equation (3.7), the result factorizes and one obtains

p̂(q) ≡
∫ ∞

−∞
p(x)eiqx dx = p̂0(q/N)N (3.8)

where p̂0(q) is the Fourier transform ofp0(y). The large-y behaviour of the latter leads
to a singularity ofp̂0(q), which, by reason of the symmetry ofp0(y), must be located at
the origin. Further, this singularity is of the type of a discontinuous derivative. For any
symmetric functionf (y) with the same largey behaviour asp0(y), f (y)−p0(y) decreases
more rapidly thany−2. This implies thatf̂ (q)−p̂0(q) has a continuous derivative. The jump
in q = 0 of the derivative ofp̂0(q) must therefore be the same as forf (y) = (1 + x2)−1,
the Fourier transform of which is exp(−π |q|). Noting that because of the normalization,
p̂0(0) = 1, one has

p̂0(q) = 1 − π |q| + o(q) (q � 1) (3.9)

and therefore

p̂(q) = lim
N→∞

(
1 − π |q|

N

)N

= exp(−π |q|) (3.10)

from which the result follows immediately by inverse Fourier transformation.
At the opposite extreme, one can consider the most rigid spectrum and see what happens

if the chaotic states are distributed uniformly. In that case,p(x) can be written as

p(x) =
∫ +1/2

−1/2
de δ

(
x −

+∞∑
n=−∞

−1

n + e

)
(3.11)

which, using the equality [22]

cotg(πx) = 1

x
+ 2x

π

∞∑
k=1

1

x2 − k2

readily gives

p(x) =
∫ +1/2

−1/2
dE δ(x − πcotg(πE)) = 1

x2 + π2
(3.12)

that is the very same Cauchy distribution as for the Poissonian case. There is no doubt that
if the two extremes of totally uncorrelated and maximally correlated spectra give the same
result, the correlation between chaotic states plays no role. Therefore, as demonstrated
in figure 2, the splittings are also Cauchy distributed when the chaotic states are GOE

† Therefore, the result will not be affected by a secular change of the mean density of states away from the origin.



2540 F Leyvraz and D Ullmo

distributed. Indeed, this result can actually be shown using supersymmetric techniques [23]
and also turns out to follow from results onS-matrix ensembles for the one-channel case
[24] under quite general conditions for both thevi and the energiesEi . In fact, it turns out
that the sums involved in computing theK-matrix in a one-channel system are exactly of the
type we are interested in and their distribution can be found exactly under the assumption
that the ensemble is ergodic and analytic in the energy. For details see [24, 25].

Figure 2. Comparison between a Monte Carlo calculated distribution of the reduced variable
x = δ±(D/v2

t ) (full curve) and the Cauchy law equation (3.6) (chained dot curve). The Monte
Carlo result is obtained from the numerical diagonalization of 105 matrices of size 80× 80,
which matrix elements are taken at random with the distribution specified by the ensemble
equation (2.3) (usingvt/D = 10−4). It thus takes fully into account the GOE correlations of the
chaotic states. Nevertheless, and although a linear scale has been used to emphasize the centre
of the distribution where the effects of correlations should be the strongest, the two curves are
essentially indistinguishable.

Before turning to the more difficult case of problems where transport limitations play
a role in the tunnelling mechanism, let us come back to a couple of points not treated in
the above discussion. Since we have seen that correlations between chaotic states are of
little importance, we shall discuss these points under the assumption that there are no such
correlations. The first concerns the fact that the tunnelling matrix elements are randomly
distributed following a Gaussian law, instead of being constant as assumed in the above
discussion. However, it can easily be checked that, in the Poissonian case, this simply
amounts to performing first the integral over the tunnelling matrix elements distribution.
The second point concerns the need to use the regularized form equation (3.1) instead of
its non-degenerate approximation equation (3.2). Let us now see the effect of using this
more correct formula which takes quasi-degeneracies fully into account by treating the
corresponding 2× 2 matrix exactly. In this case the relevant function ofξi is equal to

yi = ξi

(CN)2 −
√

(CN)4 +
(

2vi

ξi

)2
 CN = D2N2

v2
t

(3.13)

which is equal toξ−1
i for ξi � C−1

N but saturates to a value of 1/vt for smaller values of
ξi . This implies thatp̂0(q) has a singularity of the type described above only forq less
thanvt/(ND). This in turn involves a departure of̂p(q) from pure exponential behaviour
whenq becomes of the order ofvt/D and hence for normalized splittings of the order of
D/vt, which in unnormalized units correspond to splittings of ordervt. We recover in this
way the intuitive picture discussed above, namely that the basic role of the regularization
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is to prevent splittings of size larger than the root-mean-square deviation of thevi , whereas
the distribution for smaller values remains unaffected. For the distributionp(x) displayed
in figure 2, the effect of this regularization cannot be observed because it only affects the
rangex > v−1

t = 104 which is not covered in this linear scale. It is however clearly seen
in figure 1, as well as in figures 3 and 4 of the following section.

4. The case of efficient barriers

Let us now consider the more complicated case of systems for which transport limitation
induces strong correlation between the symmetry classes. As we have emphasized in the
previous section, the correlation between chaotic states inside a symmetry class has little
or no influence on the distribution of the shifts,δ+ and δ−, of the regular levels, due to
their coupling with the chaotic states. Therefore, even in the case where there exist efficient
barriers to transport in the chaotic region, the shiftsδ± should be still distributed according
to the Cauchy distribution derived in the preceding section. In fact, the main effect of such
barriers is to induce strong correlations between theE+

i and theE−
i , which only affect

the distribution of the splittings themselvesδ = |δ+ − δ−|. Another consequence of the
presence of partial barriers which may also influence the distribution of splittings is that it
may yield some inhomogeneity of the variance of the tunnelling matrix elements, as well
as of the correlation between chaotic states. We shall come back to this point at the end
of the section when comparing our findings with exact results calculated numerically using
Monte Carlo techniques.

4.1. Derivation of equations (2.8)–(2.10)

To lighten the notation somewhat, we use in this subsection scaled energiese±
i = E±

i /D

(for which the mean density of states around the regular level is therefore one), and note
v̄t = vt/D and ᾱ = α/D. We use the following modelling of our problem. First, we shall
ignore any correlation between chaotic states inside each symmetry class and merely require
that the mean density of chaotic states be equal toD aroundER = 0. To normalize the
number of states toN , we choose the variablese+

i ande−
i both distributed according to a

Gaussian law, which we take to beN−1e−π(e±
i /N)2

. In this way, the density at zero is 1/N

for each level (and thus the total density is one). Since we shall consider theN → ∞
limit, this can be thought of as a flat distribution on the scale of a mean level spacing,
the Gaussian form being just introduced to normalize in a proper way the distribution.
Again, we take the chaotic states to be identically distributed random variables, thee+

i

are independent of each other for different values ofi. The correlations between the two
parity sequences of chaotic states must be implemented which we shall do by assuming that
the (e+

i − e−
i ) have a Gaussian distribution characterized by its widthᾱ. As discussed in

section 2,ᾱ is related to a characteristic time necessary for a classical trajectory to travel
from one regular island to its symmetric counterpart. To justify this construction, let us
consider for instance the ensemble of equation (2.5) introduced in section 2. In this case,
it was seen that the Hamiltonians of the two symmetry sectors are related to one another
by adding a GOE matrix, the off-diagonal elements of which have variance(2σ)2, related
through equations (2.6) and (2.7) to the classical flux8 crossing the partial barrier. As is
well known, the resulting spectrum is formally the same as the result of letting the levels
move according to an interacting Brownian motion during a time3 = σ 2/D2, as described
by Dyson [26]. However, for short times (i.e. small3), it is generally accepted that an
interacting diffusion process can be replaced by a free one [27], which here means that the
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(E+
i − E−

i ) follow a Gaussian distribution, of widthα = √
2(2σ). This also follows more

specifically from the results shown in [28]. There it was shown that a randomly distributed
sequence diffusing over a short time3 only acquires correlations on a scale of

√
3. (Note

that for α2 � D2, this modelling becomes essentially meaningless. For instance it is not
possible anymore to specify unambiguously whichE−

i ′ is to be associated with a givenE+
i

when considering the variance of their difference. This is not of great importance, though,
since the final result shows that in this case the truncated Cauchy behaviour described in
section 3 is recovered.) Thus the joint probability distribution function of thee+

i and the
e−
i is

P(e+
i , e−

i ) =
(

1√
2πᾱN

)N N∏
i=1

exp

(
−π

(
e+
i

N

)2

+ 1

2ᾱ2
(e+

i − e−
i )2

)
. (4.1)

Note the asymmetric treatment ofe+
i ande−

i . This simply means that, because of the very
strong correlation between the two sets of eigenvalues, the large-scale distribution of one
set entirely determines that of the other.

For more structured ensembles than the one of equation (2.5), the actual diffusion
process, while ‘turning on’ the transport parameters3n’s from zero to their actual value,
may be significantly more complicated. Nevertheless, because the final splitting results
from the average effect of the coupling with a large number of chaotic states, it is natural
to assume that a kind of central limit theorem is involved and that the form equation (4.1)
can also be used in practice (we shall discuss this question in greater detail in the next
subsection). As mentioned in section 2, however, there will not necessarily be a simple
relationship betweenα and the transport parameters of these ensembles.

Now the problem is to compute the splitting distribution. We shall disregard in
the following the complications created by the inclusion of the complete expression
equation (3.1) for the shifts, since this only causes a cut-off at values ofδ equal tovt,
as was already discussed in the previous section. As a further simplification, we shall take
for a moment the tunnelling matrix elements as being constant (equal tovt) and shall come
back later to the (slight) modifications to the result due to averaging over their Gaussian
distribution. Introducing the scaled variableX = (δ+−δ−)/D, (δ/D = |X|) the distribution
of X is obtained as

p(X) =
∫ N∏

i=1

de+
i de−

i P (e+
i , e−

i ) δ

(
X − v̄2

t

N∑
i=1

(
1

e+
i

− 1

e−
i

) )
. (4.2)

Again, this integration can be factorized by introducing the Fourier transformF(q) of p(X)

and everything can be reduced to quadratures. The details are a trifle tedious and are
therefore relegated to appendix A. The final result is

p(X) = 1

2π

∫ ∞

−∞
F(q)e−iqx dx (4.3)

F(q) = exp

(
− ᾱ√

2π
9(q̃)

)
q̃ = v̄2

t

ᾱ
q. (4.4)

Here9(q̃) is given by the expression

9(q̃) =
∫ ∞

−∞
dy 8

( √
8q̃

|1 − y2|
)

(4.5)

8(z) = 2
∫ ∞

0

dt

t3
(1 − coszt)e−1/t2

. (4.6)
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For ease of reference we give the following integrals, which are derived for completeness
in appendix B:∫ ∞

−∞
8(1/y) dy = π3/2 (4.7)∫ ∞

−∞
8(1/y2) dy =

√
2π 0(3/4). (4.8)

An asymptotic study of the function8(z) for z � 1 andz � 1 yields

8(z) =
{

−z2 ln z + O(z2) z � 1

+1 + O(z−1) z � 1
(4.9)

(the prefactors given here are actually correct, but we shall not need them, and the order of
magnitude is easy to obtain). Therefore,9(q̃) basically gives a measure of the domain ofy

such thatq̃/(1−y2) is larger than one. For̃q � 1, this is obviously of order
√

q̃. It can be
evaluated more precisely by noting that in this range ofq̃, 8(

√
8q̃/|1 − y2|) ' 8(

√
8q̃/y2).

This is the case, because in the range ofy where |1 − y2|−1 6' y−2, i.e. for y not large,
both q̃/|1 − y2| and q̃/y2 are much larger than one if̃q is and therefore8 saturates to its
asymptotic value one in any case. One therefore finds forq̃ � 1

9(q̃) ≈
∫ ∞

−∞
dy 8

(√
8q̃

y2

)
= 23/40(3/4)

√
2π |q̃|. (4.10)

and

F(q) ≈ F∞(q) = exp

(
−23/40(3/4)

√
ᾱv̄2

t |q|
)

for q � ᾱ

v̄2
t

. (4.11)

For q̃ � 1 on the other hand,̃q/(1 − y2) is large only in the neighbourhood ofy = 1.
From this it follows that one can restrict oneself to the range of integrationy ∼ ±1. One
obtains

9(q̃) ≈ 2
∫ 1+q̃

1−q̃

dy 8

( √
8q̃

(1 − y)(1 + y)

)
≈ 2

∫ ∞

−∞
dt 8

(√
2q̃

t

)
= (2π)3/2q̃

and therefore

F(q) ≈ F0(q) = exp(−2πv̄2
t |q|) for q � ᾱ

v̄2
t

. (4.12)

It remains to perform the inverse Fourier transform equation (4.4) and to deduce the
asymptotic behaviour ofp(X) from that of F(q). For largeX, p(X) is dominated by
the singularities of its Fourier transform, which here means the derivative discontinuity at
the origin. Therefore for̄vt > X � v̄2

t /ᾱ one can use in equation (4.4) the asymptotic
q � ᾱ/v̄2

t approximationF0(q) of F(q). Applying the inverse Fourier transformation
yields an almost perfect Cauchy distribution of the form

p(X) = 2v̄t

X2 + 4π2v̄2
t

. (4.13)

The above result amounts to adding independently the variableδ+ and δ−, distributed as
given by equation (3.6), and to neglect the correlations between the two symmetry classes.
As mentioned in [10], this is indeed quite natural since splittings larger thanv2

t /ᾱ are due to
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chaotic levels lying closer than a distanceᾱ from the regular level. Sincēα can be viewed
as the scale on which chaotic levels are correlated, chaotic states contributing top(X) for
X � v̄2

t /ᾱ can therefore be considered as essentially decorrelated from their symmetric
counterparts. In the language of section 2, the splittings we are looking at here are so large
that the tunnelling is always mediated by a single state.

Consider now the rangeX � v̄2
t /ᾱ, for which the splitting distribution is affected

by correlation between symmetry classes. In that case, the term exp(−iqX) in the inverse
Fourier transformation equation (4.3) is essentially constant in all the rangeq 6 α/v2

t where
F(q) differs from its asymptotic behaviourF∞(q). Noting that

1

2π

( ∫ ∞

−∞
F∞(q) exp(−iqx) dq

)
= λ−1G(X/λ) λ =

√
802(3/4)ᾱv̄2

t (4.14)

whereG(x) is the inverse Fourier transform of exp(−√
q) as defined in equation (2.11),

one therefore has

p(X) = λ−1G(X/λ) + K (4.15)

whereK is the constant

K ≡ 1

2π

∫ ∞

−∞
dq (F (q) − F∞(q)). (4.16)

For smallᾱ, however,K is of orderᾱ2/v̄2
t whereasλ−1G(X/λ) ranges from order 1/(ᾱv̄2

t )

at X = 0 to ᾱ2/v̄2
t at its lowest value, i.e. at the crossoverX ∼ v̄2

t /ᾱ between the Cauchy-
like and G-like behaviour. ThereforeK can usually be neglected, although in some special
circumstances it shows up as a small plateau between these two regimes; we shall disregard
it from now on. Then, the large-X behaviour ofλ−1G(X/λ) is dominated by the

√
q

singularity at the origin ofF∞(q), so that it goes asX−3/2 asX → ∞. This is in fact the
hallmark of theX � v̄2

t /ᾱ regime we are discussing.
Finally, one has to take into account the fact that the tunnelling matrix elements are not

constant, but randomly distributed. As can be seen in the derivation of equation (4.4) (see
the remark below equation (A4)) this merely amounts to replacing the expression for9(q)

given in equation (4.5) by the function̄9(q) defined as follows,

9̄(q) = 〈9(v2q/α)〉v (4.17)

where the brackets denote averaging over thev’s, which we take to have a Gaussian
distribution with variancev2

t . This new function is of course much more complicated
than the original one, but its asymptotic behaviour for small or large values ofq is readily
obtained. Indeed, forq � 1, 9(q) is proportional to|q|, so that the average is obtained
by replacingv by vt. On the other hand, forq � 1, 9(q) is proportional to

√|q|, so that
its average over a Gaussian distribution is obtained by replacingv by

√
2/πvt. Using these

facts together with the above estimates for the behaviour ofp(X) one finally obtains the
result stated in equations (2.8)–(2.10) in section 2. Note a few trivial differences. There we
consider splittings as being always positive whereas in the above computation we treated
positive and negative splittings separately. This introduces a factor of two. Furthermore,
we have made the dependence onD explicit, which in particular means replacingp(X) by
Dp(X/D) as well as replacinḡα and v̄t by their original expressions.

4.2. More structured ensembles

For the simple ensemble equation (2.5), the two main assumptions we made to replace
the exact distribution by equation (4.2), namely to neglect correlation of chaotic states
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among a given symmetry class and to replace the interacting Brownian diffusion by a free
one for smallᾱ are under control. Indeed, section 3 gives full justification of the first
assumption and the second can be seen as a simple consequence of standard perturbation
theory. Actually, as shown in figure 3, one can see that our analytical findings perfectly
agree with an ‘exact’ Monte Carlo evaluation of the splitting distribution generated by the
ensemble equation (2.5). We stress that in this very simple case the parameterα that we are
using is (for smallα) simply related to the varianceσ 2 of the non-diagonal matrix elements
of (GOE)A (indeedα2 = 2(2σ)2), and that therefore there are no adjustable parameters in
this comparison.

Figure 3. Comparison between a Monte Carlo calculated distribution of splittingsδ for the
simple ensemble equation (2.5) (full curve) and the the predicted form equations (2.8)–(2.10).
The parameters of the Monte Carlo calculations are3 = 10−2/8 (imposingα/D = 0.1 for the
theoretical curve),vt/D = 10−4, number of matrices 3× 105 and size of matrices 60× 60. The
three regimes,G-like behaviour (chained dot), Cauchy-like behaviour (dash) and truncation of
the Cauchy law for splitting greater thanvt/D are clearly seen.

More structured ensembles deserve, however, some further discussion. Consider, for
instance, the ensemble relevant to the quartic oscillator system used as illustration in
section 2. Symbolically, this ensemble can be written as [10]

H±
qo =


ER {v} 0 0
{v} (GOE)1 (GOE)±(312) (GOE)±(313)

0 (GOE)±(312) (GOE)±2 0
0 (GOE)±(313) 0 (GOE)±3

 (4.18)

where the subscript± again indicates ensembles which are independent in the+ and
− symmetry class. NotingDtot the total density of states (in a given symmetry class),
(GOE)i stands for a Gaussian orthogonal ensemble such that the mean level density in
the centre of the semicircle isfiDtot, and (GOE)±(3jk) represents Gaussian distributed
independent matrix elements of varianceσ 2

jk = 3jkD
2
tot. (For the configuration of the

quartic oscillators corresponding to figure 1, one hasf1 = 0.5, f2 = 0.2, f3 = 0.3
and 312 = 0.14, 313 = 0.11.) For such complicated ensembles the two assumptions
concerning the irrelevance of intra-class correlations and essentially Gaussian distribution
of the(E+

i −E−
i ) are presumably equally well fulfilled as in the simple case of equation (2.5).

What is lost, however, is the uniformity of the distribution of the tunnelling matrix elements
and of the variance of the(E+

i − E−
i ). Indeed, in the above example, a diagonalization

of the chaotic part of the Hamiltonian is going to transfer some tunnelling matrix elements
from the block connectingER to (GOE)1 to the ones connecting (GOE)2 and (GOE)3. One
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may end in this way with three different scales for the variance of the tunnelling matrix
elements as well as for the parameterα (one for each (GOE) block).

More generally, the typical situation will be that a (possibly large) number of (GOE)
blocks, (GOE)1, (GOE)2, . . . , (GOE)K are involved in the tunnelling process. After
diagonalization of the chaotic part of the Hamiltonian, both the variance of the tunnelling
matrix elements, and the degree of correlation between symmetry classes, will be block
dependent. Each block (GOE)k (k = 1, . . . , K) would then have to be characterized by
a tunnelling parametervk and a transport parameterαk (αk and vk highly correlated), in
addition to its dimensionNk = fkN . Let us introduce the notation

I (α, vt; q) = − α

D
√

2π
9(v2

t q/αD) (4.19)

where9(q̃) is defined by equation (4.4). A straightforward modification† of the derivation
of equation (4.4) gives that taking into account the block dependence ofαk andvk merely
amounts to replacing this equation (i.e.F(q) = exp(−I (α, vt; q))) by

F(q) = exp

(
−

K∑
k=1

fkI (αk, vk; q)

)
. (4.20)

Inspection of equations (4.11) and (4.12) then shows that they remain valid providedα and
vt are now defined as

v2
t ≡

∑
k

fkv
2
k (4.21)

α ≡ 1

v2
t

( ∑
k

fkα
1/2
k vk

)2

. (4.22)

Multiplying equation (4.21) byN , Nv2
t appears as the (average) square norm of the

projection of the quasi-mode9±
R on the chaotic space. It is therefore independent of

the chaotic phase space structure. This, for instance, allows computation ofvt from the
variance of the tunnelling matrix elementsbeforediagonalization of the chaotic part of the
Hamiltonian. The parameterα andvt have, moreover, a certain number of intuitively clear
properties: if allvk are multiplied by a constant factor, the effective tunnelling elementvt

is multiplied by the same factor, whereasα is unaffected. Further, if allvk are identical,
then the effective tunnelling element is the same. On the other hand, the same is not true
of α: if all αk and all vk are taken to be equal, the effective efficiency of the classical
barrier now depends on the number of different components of phase space through which
tunnelling can take place. Further, we see that any components with negligible values of
vk will contribute negligibly both tovt andα. Thus we can identify a given part of phase
space through which tunnelling actually occurs and limit ourselves to it.

With the definitions equations (4.21) and (4.22) ofvt and α, structured ensembles are
therefore seen to behave in essentially the same way as the simple ensemble equation (2.5).
The only difference is that the condition of validity of equations (4.11) and (4.12), that is

q � (αkD)/v2
k (4.23)

† In equation (A4), limN→∞(1 − I (q)/N)N has to be replaced by

lim
N→∞

[ K∏
k=1

(1 − I (αk, vk; q)/N)fkN

]
.
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and

v−1
k � q � (αkD)/v2

k (4.24)

respectively, must now be fulfilled for allk’s. The transition between the different regimes
of the distributions may therefore be less sharp than for the ensemble equation (2.5).

If the partial barriers structures were to become highly developed, say to the point that
the ensemble could meaningfully be described in terms of band matrices, then obviously the
issue of localization would have to be considered. In this case, the orders of magnitude of the
αk might become comparable to those of thevk and most of the splitting distribution might
be actually in a transition-like regime. These are exactly the sort of problems we pointed out
in our earlier discussion of the physical situation. However, as long as theαk ’s are clearly
larger than thevk ’s, the transition from one regime to another should still take place on a
short scale as compared to the range spanned by the distribution. Physically speaking, this
condition amounts to saying that classically forbidden processes are always much slower
than classically allowed ones. In that case, the form of the result should not be visibly
affected. For example, as seen is figure 4, the distribution resulting from the ensemble
described in equation (4.18) still perfectly follows the predicted form equations (2.8)–(2.10)
(note, however, thatα is now a tunable parameter).

Figure 4. Comparison between a Monte Carlo calculated distribution of splittingsδ for the
ensemble equation (4.18) withf1 = 0.5, f2 = 0.2, f3 = 0.3 and312 = 0.14, 313 = 0.11 (full
curve), and the predicted form equations (2.8)–(2.10). The Monte Carlo calculations have been
performed with 105 matrices of size 100× 100, using as tunnelling parameter(v1)

2/D = 10−3.
For the theoretical curves, namely theG-like (chained dot curve) and Cauchy-like (dash curve)
behaviours, the tunnelling parameter is determined by equation (4.21) as(vt)

2 = (v1)
2/2.

The transport parameter, however, is here a tunable parameter, which has been taken equal
to α/D = 0.1.

As a final comment, let us remark that the construction of ensembles such as
equation (4.18) was made in [10] under the assumption that the transport across partial
barriers can be modeled classically by a Markovian process involving only one parameter
(time scale). When a set of dense cantori exists either within or between chaotic regions, it is
possible, however, that the transport properties are better described by a power law lacking
identifiable characteristic times. Although this is nota priori the configuration we want to
describe, it should be borne in mind that the structure of the matrix ensembles modelling the
statistical properties of the associated quantum system is essentially affected by the features
of the classical dynamics for times of the order of the Heisenberg time. Events occurring
on a much shorter time scale are in any case treated as random and the effect of times much
longer is presumably strongly suppressed by localization effects. Therefore the difference
between power law and exponential decay may be of less importance quantum mechanically
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than it is classically, and it is plausible that the discussion given above for a large number of
Markovian partial barriers apply as well for instance to the case of chaotic region separated
by a dense set of cantori (at least provided these latter do not occupy a significant fraction
of the phase space). In particular the criterion of applicability of the theory should be
that the matrix elements associated with transport across the barrier (related to the classical
flux crossing the barrier within Heisenberg time) is much larger than the tunnelling matrix
elements, rather than whether a single time scale can classically characterize the barrier.
Further studies are, however, required to confirm, or infirm, this handwaving argument.

5. Conclusion

In conclusion, we have provided in this paper an analytical study of the splitting distributions
generated by ensembles of random matrices constructed in [10] to model a tunnelling process
in the chaos-assisted regime. The original ensembles may contain such a complicated
structure that a general answer to this problem may seema priori out of reach. Nevertheless,
it turns out that only the average size of the tunnelling matrix elements and the degree of
correlation between the chaotic spectra in the different symmetry class affect the distribution
and that therefore the problem can be reduced to a simpler formulation which is tractable.

The basic reason for the considerable simplifications encountered was in essence already
pointed out in [10]. It is due to the fact that for large splittings only the situation of near-
resonance to a given state of the chaotic sea is of relevance. To this obvious remark we only
need add that, for the case in which efficient barriers are at work, the tunnelling operates
not through single states, but through quasi-degenerate doublets of states of opposite parity.
These are of course less efficient in promoting tunnelling, since the particle requires a time
of the order of the width of the doublet to reach the symmetrical torus. In either case, the
behaviour is determined by rather natural probabilistic considerations. It turns out to be
sufficient to consider only the probability of one single eigenvalue being near the tunnelling
state, so that correlations between eigenvalues could be safely ignored. Further, the very
simplicity of the physical picture given here results in it being fairly robust to changes in
minor details of the model. Thus it does not appear necessary that all states in the chaotic
sea should participate equally in the tunnelling process, nor that the couplings should be
uniform. In fact, the main limitations of our result seem to be the ones related to localization
phenomena. If the structure of the barriers in phase space is sufficiently complicated, it is
possible that localization effects, associated with the presence of a large number of partial
barriers, become as effective in limiting tunnelling from one quasi-mode to its symmetric
partner as the initial classically forbidden process. In this case, the splitting distributions
we have obtained would no longer be relevant. However, this should not be too severe a
limitation, and it should generally be possible to determine for any given system whether
this takes place or not. When it does not, the picture of tunnelling in the presence as well
as in the absence of barriers to transport is indeed the one we gave. This is substantiated by
the numerical work done. In particular, we showed that not only the simplest model of a
barrier gives results in good agreement with theoretical predictions, but also a highly specific
random matrix ensemble constructed explicitly in order to model chaos-assisted tunnelling
in a system of coupled quartic oscillators was well fitted by the theoretical predictions, as
were also the actual splitting distribution for this system.

This might possibly open up a way to identify chaos-assisted tunnelling in experimental
systems. In such systems, the exhaustive study of the classical mechanics necessary to
produce a satisfactory random matrix ensemble would probably not be feasible. Nevertheless
the above remarks strongly suggest that if chaos-assisted tunnelling is present, the splitting
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distribution will reflect this fact by showing a highly specific and well characterized
behaviour. Indeed, as discussed throughout this paper, only the scale of the distribution
and the position of the transitions between the different regimes are system dependent,
but the shape of the distribution is essentially universal. In particular, the experimental
detection of a transition from aδ−3/2 behaviour, characteristic of theG-like regime, to a
δ−2 behaviour, characteristic of the Cauchy-like regime, would be a powerful argument in
favour of the presence of chaos-assisted tunnelling.
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Appendix A. Computation of the distribution function

Denote by brackets the integration overe+
i ande−

i with the weight functionP(e+
i , e−

i ) (see
equation (4.1)). We define

p(X) =
〈
δ

(
x − v̄2

t

N∑
i=1

(
1

e+
i

− 1

e−
i

) )〉
(A1)

F(q) =
∫ ∞

−∞
F(X)eiqX dx

=
〈

exp

(
iqv̄2

t

N∑
i=1

(
1

e+
i

− 1

e−
i

) )〉
. (A2)

This last expression factorizes inN factors, each of which is a double integral. Denoting
the corresponding average overe+ ande− also by brackets, one obtains

F(q) = 〈exp(iqv̄2
t (1/e+ − 1/e−))〉N

= (1 − 〈1 − exp(iqv̄2
t (1/e+ − 1/e−))〉)N

=
(

1 − IN(q)

N

)N

(A3)

where the last line definesIN(q). The reason for this manipulation is that in this wayIN

goes to a finite limitI asN → ∞ and therefore

lim
N→∞

F(q) = lim
N→∞

(1 − I (q)/N)N = exp(−I (q)). (A4)

Note, moreover, that taking into account the fact that the tunnelling matrix elements are
random variable of variancev2

t instead of being constant just amounts to interpreting〈·〉
as containing a further integral over the tunnelling matrix elements’ distribution. This
introduces no further difficulties in the calculation ofI , except for more complicated
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notation. We shall therefore not consider it in this appendix and just modify the final
result in the appropriate way at the end of section 4.1.

One finds

I (q) = 1√
2πᾱ

∫
de+ de− (1 − exp(iv̄2

t q(1/e+ − 1/e−))) exp

(
− (e+ − e−)2

2ᾱ2

)
(A5)

since the above integral being convergent, limN→∞ IN is just obtained by dropping the
term−π(e+/N)2 in the exponent ofP(e+, e−) (see equation (4.1)). Making the successive
transformationsy = (1/e+ + 1/e−)/(1/e+ − 1/e−), w = (1/e+ − 1/e−), followed by
t = w(ᾱ(1 − u2)/

√
8), I (q) can be expressed as

I (q) = 8√
2πᾱ

∫
dy

(1 − y2)2

∫
dw

|w|3 (eiwv̄2
t q − 1) exp

(
− 8

ᾱ2(1 − y2)2w2

)
= ᾱ√

2π

∫
dy

∫
dt

|t |3
(

1 − cos

( √
8qv̄2

t

ᾱ(1 − y2)

))
e−1/t2

. (A6)

If we now introduce8(z) as in the text,

8(z) = 2
∫ ∞

0

dt

t3
(1 − coszt)e−1/t2

(A7)

one easily obtains

I (q) = ᾱ√
2π

∫
dy 8

( √
8v̄2

t q

ᾱ|1 − y2|
)

. (A8)

From this follows the formula given in the text,

F(q) = exp

(
− ᾱ√

2π
9(v̄2

t q/ᾱ)

)
(A9)

where9(q̃) is given by the expression

9(q̃) =
∫ ∞

−∞
dy 8

( √
8q̃

|1 − y2|
)

. (A10)

Appendix B. Some useful integrals

We first give another expression for8(y),

8(y) =
∫ ∞

0
dt

(
1 − cos

y√
t

)
e−t (B1)

which is obtained from the original definition by substituting 1/t2 by t . From this follows∫ ∞

−∞
8(1/y) dy =

∫ ∞

−∞
8(y)

dy

y2

=
∫ ∞

0
dt e−t

∫ ∞

−∞

(
1 − cos

y√
t

)
dy

y2

=
∫ ∞

0

dt√
t
e−t

∫ ∞

−∞

1 − cosy

y2
dy

= 0(1/2)

∫ ∞

−∞

siny

y
dy = π3/2. (B2)
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The other integral is handled similarly:∫ ∞

−∞
8(1/y2) dy =

∫ ∞

−∞
8(y2)

dy

y2

=
∫ ∞

0

dt

t1/4
e−t

∫ ∞

−∞

1 − cosy2

y2
dy

= 20(3/4)

∫ ∞

−∞
siny2 dy =

√
2π0(3/4). (B3)
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